Techno-economic analysis of bio-methane production from agriculture and food industry waste

Copyright, Publisher and Additional Information: Publishers version distributed under the terms of the Creative Commons Attribution – Non-commercial - No Derivatives License: https://creativecommons.org/licenses/by-nc-nd/4.0/

DOI: https://doi.org/10.1016/j.egypro.2017.07.252

Techno-economic analysis of bio-methane production from agriculture and food industry waste

Gabriel D. Oreggionia,*, Mauro Lubertib, Matthew Reillyc, Marie E.Kirbyc, Trisha Toopc, Michael Theodorouc, Savvas A. Tassoua

aBrunel University London, Institute of Energy Futures, Center for Sustainable Energy Use in Food Chains, Uxbridge, Middlesex UB8 3PH, UK
bProcess Systems Enterprise, London, UK.
cDepartment of Animal Production, Welfare and Veterinarian Sciences, Harper Adams University, New Port, UK.

Abstract

Bio-methane production via anaerobic digestion is a promising technology for the decarbonization of the energy system. Bio-gas obtained from anaerobic digestion of farm and food industry waste is largely composed of 60% CH\textsubscript{4} and 40% CO\textsubscript{2}. For injection of bio-methane into the gas distribution network it is necessary to remove CO\textsubscript{2} from the biogas so that a richer CH\textsubscript{4} stream is injected to satisfy gas network requirements. Chemical separation processes using solvents that react with CO\textsubscript{2} or physically processes using adsorbents or membranes in which CO\textsubscript{2} is retained are currently under investigation to reduce associated energy consumption whilst maximizing CO\textsubscript{2} removal. In the case of sorbent based processes, research is mainly focused on the optimal design of pressure swing adsorption (PSA) cycles. In this work, a comparative techno-economic study of bio-gas upgrading for bio-methane production using solvent based processes and pressure swing adsorption cycles is presented. The results show that, pressure swing adsorption cycles exhibit 37\% lower capital costs and 10\% lower average life-time costs compared to solvent based technologies.

© 2017 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of the scientific committee of the 1st International Conference on Sustainable Energy and Resource Use in Food Chains.

Keywords: bio-gas, anaerobic digestion, pressure swing adsorption, solvent based units

* Gabriel D, Oreggioni, Tel.: +44-1895-265947; fax: +44-1895-269777.
E-mail address: Gabriel.oreggioni@brunel.ac.uk
1. Introduction

Anaerobic digestion (AD) is a proven technology to treat farm and food industry wastes [1]. Due to microbiological activities, macromolecules such as lipids, proteins and carbohydrates are converted into small chain acids and ultimately into a gaseous mixture (bio-gas) of CH4 and CO2 [2]. Farm originated bio-gas presents a CH4 mole fraction close to 60% while CO2 largely accounts for the remainder. Bio-gas can be upgraded to bio-methane, for injection to the gas network for use in domestic, commercial and industrial heating or used as fuel in road transport.

Different gas separation technologies can be used for bio-gas upgrading to bio-methane such as chemical and physical driven processes [3]. In chemical driven processes, the CO2 and other acid gases like H2S react with a solvent in an absorption column resulting in a bio-methane stream free form CO2 and H2S. Solvent is then thermally regenerated and recirculated to the absorption column. In physically driven separations, CO2 is retained in the surface or in the pores of the separation agent that can be a membrane or an adsorbent [4]. The separation agent is then regenerated using pressure difference and/or vacuum processes [5].

Solvent based processes use mainly aqueous solutions of amines (primary, secondary or tertiary) such as mono-ethanol (MEA), di-ethanol (DEA) or tri-ethanol amine (TEA) as separation agents. Acid gas removal is a widely known and employed technology for natural gas sweeting however the CO2 mole fractions for natural gas are far lower than the analogous for bio-gas (4-5% CO2 mole fraction for untreated natural gas and 40-50% CO2 mole fraction for bio-gas). Significant differences in terms of operating pressures also exist (around 20 bar for the natural gas sweetening process and between 1 and 1.5 bar for the bio-gas upgrading) [6]. The performance of amine based separation units for bio-gas upgrading was studied in previous works [7-8]. Gamba et al [7] reported energy consumption close to 3.52kWh/ Nm3 of treated bio-gas or 0.205 kWh/mol of removed CO2 when a 15% w/w MEA aqueous solution is used as solvent. Larger MEA weight percentage in the solvent would enable a larger CO2 load thus lower solvent flowrates and lower energy consumption in the reboiler of the stripper. Solutions of 30% w/w have
been suggested in the literature for CO₂ capture applications, allowing energy consumptions around 0.041 kWh/mol of removed CO₂ [9].

Pressure swing adsorption (PSA) cycles are the most commercially employed sorbent based technology applied to bio-gas upgrading for bio-methane production [10]. In PSA cycles, gas mixtures are separated due to adsorption and desorption steps driven by pressure swings. CO₂ is retained in the pores of the adsorbent during the adsorption step while a nearly CO₂ free methane stream is produced. The sorbent is regenerated during the desorption step, which may occur at atmospheric pressure or vacuum. The separation performance and the associated energy consumption are a consequence of the cycle step design, the adsorption and desorption pressure and the purge and feed ratio. Several works have previously assessed the techno-economic feasibility of the use of pressure swing adsorption cycles in bio-gas to bio-methane upgrading [11-13]. They mainly focused on analyzing high pressure adsorption (up to 8 bar) and atmospheric pressurized purge step, considering as well the expansion of the product gas as a way to produce part of the energy required by the PSA cycles. The use of nearly atmospheric pressurized adsorption and vacuum operated desorption steps (pressure vacuum swing adsorption cycles, PVSA) would enable a better economic performance; requiring lower duty blowers, less expensive columns and a lower energy consumption without the need to expand the product gas.

In this paper, a techno-economic comparison is made between absorption based (using MEA 30%) and pressure vacuum swing adsorption cycles for bio-gas upgrading to bio-methane in the context of anaerobic digestion processes for a 125 herd size cow dairy farms. Economic assessment relies on highly detailed process models for the separation units and on an extensive literature review of different capital investment costs. Results will be valuable for the analysis and deployment of the studied technologies in the farming and the food industry sectors.

2. Plant islands under study

2.1. AD reactor and biogas yield

For the study, the biogas composition and flow-rate were estimated using the Bunsen Boyle equation [14] for a 125 dairy cow herd. It was assumed that each cow produced a daily amount of slurry close to 64 kg [15]. Chemical and physical properties for the slurry were based on the information presented by [16]. Bio-gas composition and volumetric inlet flow to the gas upgrading units are shown in Table 1. Capital investment cost for AD reactor was estimated using the correlation presented in [17] while yearly operating costs were assumed to be 7% of the life-time capital investment cost [18,19].

<table>
<thead>
<tr>
<th>Table 1. Biogas flow and composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biogas flow-rate (kg/kg VS)</td>
</tr>
<tr>
<td>Biogas flow-rate (kg/s)</td>
</tr>
<tr>
<td>CH₄</td>
</tr>
<tr>
<td>CO₂</td>
</tr>
<tr>
<td>NH₃</td>
</tr>
<tr>
<td>H₂S</td>
</tr>
</tbody>
</table>

In this study, it was decided to employ a two stage 4 step Skarstrom PVSA cycle adsorption based separation process. In the basic cycle configuration, shown in Fig. 1, each bed undergoes four different steps: adsorption, blowdown, purge and pressurization. During the adsorption step, the most strongly adsorbing specie is retained in the solid while a nearly free CO₂ stream is obtained. It was assumed that the adsorption step took place at 1.5 bar. During the blowdown step, the most strongly adsorbing specie is concentrated in the column due to the pressure decrease that causes the least adsorbing component to leave the column. The sorbent is regenerated at the purge step using a fraction
of the adsorption product gas while the column reaches adsorption pressure due to bio-gas inlet during the pressurization step. Energy is consumed for pressurizing the feed inlet and to produce vacuum. The use of two stages is commonly suggested in order to meet the required separation target with a lower energy consumption [20-22].

Zeolite 13 X was assumed as a separation agent for the adsorption units. Equilibrium functions for CO$_2$ and CH$_4$ and sorbent physical properties were published by [23]. Simulations for the PVSA unit were conducted by using gPROMS software [24] having implemented the model presented in [25], which considers different mechanisms for mass and heat transfer between the phases and the column wall. The simulation of PSA cycles is a computationally challenging problem, due to the non-linear relationships and interdependency among the variables, which leads to a complex system of non-linear partial differential equations. Considering the multi-variable problem and the difficulty of identifying a set of optimal solutions using genetic algorithms, a manual optimization was carried out by effectuating a sensitivity analysis of the different variables. Initial guess for column residence times and cycle configurations were based on the cycle design presented in [26]. Purge pressure and purge to feed ratio were selected in the different stages so that aimed CH$_4$ purity was reached, maximizing CH$_4$ recovery but with the lowest specific energy consumption. Table 2 displays operating conditions for the two stages as well as column dimension and overall performance parameters. It was assumed that the electrical power for the operation of the PSA cycles was supplied from the national electricity grid. This electricity accounted for 55% of the electricity consumption of the farm.

The cost for the PSA columns was estimated by quantifying the vessel thickness using ASME codes [27]. Capital investment cost for the vessels was determined using cost tools available online [28]. Zeolite cost was obtained from the vendors. Capital investment cost for the required blower and vacuum pumps was determined from manufacturers and cost estimator tools.

2.3 Solvent based unit

The conventional MEA process, shown in Fig. 2, is one of the most widespread gas sweetening technologies [7]. Bio-gas is fed to the absorber in which CO$_2$ reacts with the solvent through chemical absorption and a mixture of CH$_4$ and steam is produced at the top. The rich gaseous CH$_4$ stream is cooled down and steam is condensed so that a 95.9% CH$_4$ mole fraction stream is produced. The rich CO$_2$ solvent stream is processed in a stripper column in which the CO$_2$ is desorbed by coming into contact with steam produced in the reboiler, and a rich CO$_2$ gaseous stream is obtained. The lean CO$_2$ solvent is pumped to the absorption column in combination with solvent and water make up to compensate possible losses in the process.
Table 2. Technical performance and equipment sizing for sorbent based units

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>First stage</td>
<td></td>
<td>Second stage</td>
</tr>
<tr>
<td>P_{feed} (bar)</td>
<td>1.5</td>
<td>P_{feed} (bar)</td>
<td>1.5</td>
</tr>
<tr>
<td>P_{vacuum} (bar)</td>
<td>0.2</td>
<td>P_{vacuum} (bar)</td>
<td>0.1</td>
</tr>
<tr>
<td>P/F ratio (%)</td>
<td>3.0</td>
<td>P/F ratio (%)</td>
<td>1.0</td>
</tr>
<tr>
<td>L_c (m)</td>
<td>3.0</td>
<td>L_c (m)</td>
<td>2.6</td>
</tr>
<tr>
<td>D_c (m)</td>
<td>0.3</td>
<td>D_c (m)</td>
<td>0.2</td>
</tr>
<tr>
<td>Feed compression power (kW)</td>
<td>0.46</td>
<td>Feed compression power (kW)</td>
<td>--</td>
</tr>
<tr>
<td>Vacuum power (kW)</td>
<td>1.02</td>
<td>Vacuum power (kW)</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Overall unit</td>
<td></td>
</tr>
<tr>
<td>CH$_4$ recovery (%)</td>
<td>84.1</td>
<td>CH$_4$ purity (%)</td>
<td>96.2</td>
</tr>
<tr>
<td>Specific energy consumption (kJ/Nm3 biogas)</td>
<td>200.6</td>
<td>Specific energy consumption (kJ/CO$_2$ removed)</td>
<td>10.1</td>
</tr>
</tbody>
</table>

Table 3 displays the main operating conditions for the absorption and stripping columns, selected packing, number of theoretical trays, column dimensions and thermal and electrical duty in heat and flow transfer devices. Capital investment cost for the absorption and stripping columns were estimated from information for costs and equivalent height in packed columns presented by [29]. Capital investment cost for biogas blower, stripper condenser and reboiler were quantified using the information from quotes and correlation present in online cost estimator tools [20].

3. Comparative assessment

To enable a good comparison between both gas upgrading technologies, two indicators were analyzed: the net bio-methane thermal flow per kg of volatile solids (NBM), Eq. 1, and the average life-time cost per thermal unit of bio-methane, Eq. 2. Thermal flow was estimated by accounting for the mass of bio-methane produced and the bio-methane low heating value (LHV). The specific thermal flow per kg of volatile solids (VS) was quantified by considering the
ratio between the thermal bio-methane flow to the mass of volatile solids in the slurry, which was assumed to be equal to the mass of bio-degradable waste.

Thermal flow was estimated by accounting for the mass of bio-methane produced and the bio-methane low heating value (LHV). The specific thermal flow per kg of volatile solids (VS) was quantified by considering the ratio between the thermal bio-methane flow to the mass of volatile solids in the slurry, which was assumed to be equal to the mass of bio-degradable waste.

Table 3. Technical performance and equipment sizing for sorbent based units

<table>
<thead>
<tr>
<th></th>
<th>Absorber</th>
<th>Stripper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating pressure (bar)</td>
<td>1.3</td>
<td>Operating pressure (bar) 2.0</td>
</tr>
<tr>
<td>Operating temperature (°C)</td>
<td>43.6</td>
<td>Operating temperature (°C) 100</td>
</tr>
<tr>
<td>Packing</td>
<td>FLEXIPAC 250Y</td>
<td>Packing IMTP#40</td>
</tr>
<tr>
<td>Number of trays</td>
<td>25</td>
<td>Number of trays 30</td>
</tr>
<tr>
<td>Lc (m)</td>
<td>0.12</td>
<td>Lc (m) 15.0</td>
</tr>
<tr>
<td>Dc (m)</td>
<td>0.12</td>
<td>Dc (m) 0.08</td>
</tr>
<tr>
<td>Feed compression power (kW)</td>
<td>0.58</td>
<td>Reboiler (kW) 19.0</td>
</tr>
<tr>
<td>Pump rich amine (kW)</td>
<td>0.005</td>
<td>Condenser (kW) 0.9</td>
</tr>
<tr>
<td>Heat rich and lean amine (kW)</td>
<td>13.6</td>
<td></td>
</tr>
</tbody>
</table>

Overall performance

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₄ recovery considering biogas burned for reboiler operation (%)</td>
<td>81.7</td>
</tr>
<tr>
<td>CH₄ purity (%)</td>
<td>95.9</td>
</tr>
<tr>
<td>Specific heat consumption (kJ/Nm³ biogas)</td>
<td>1607.1</td>
</tr>
<tr>
<td>Specific heat consumption (MJ/kg CO₂ removal)</td>
<td>3.85</td>
</tr>
</tbody>
</table>

\[
NBM_{kgVS} = BMFR \left(\frac{MSL \times VS(\%)}{100} \right)
\]

\[
ALTCBM = \left(\frac{\sum n CIC + O & M}{(1 + r)^n} \right) \div \left(\frac{\sum n BMFR}{(1 + r)^n} \right)
\]

The average life-time cost of bio-methane is defined as the discounted life-time cost of ownership and use of the plant per unit of bio-methane energy produced in pence/kWh [30]. The average life-time cost of bio-methane was estimated as the ratio of the total cost of the plant (including both capital and operating cost), to the total amount of bio-methane energy flow expected to be produced over the plant’s lifetime (20 years).

Higher values for the bio-methane thermal flow per unit of bio-degradable mass unit of waste were obtained for the AD plant with PVSA cycles. This was due to the fact that the energy consumption for the bio-gas upgrading unit was supplied by using electricity from the grid instead of burning part of the produced bio-gas in a CHP system to generate the electricity. It must be noted as well that for the MEA process, the duty of the reboiler of the stripper is 229 % larger than the heat requirement for the farm and the AD reactor while the power consumption for the PSA cycles account for 55% of the electricity consumption of the farm and the AD reactor.
The use of technical indicators to compare separation units with thermal and electrical inputs is not straightforward; thus, the average life-time cost of methane (ALTCBM) becomes a useful tool to compare the performance of both processes under discussion in this article. As it can be seen from Fig. 4, lower values of ALTCBM for the plant with PVSA cycles were obtained. This was mainly due to a larger bio-methane production rate and to lower capital investment costs in comparison with the AD plant with installed MEA process. Capital investment costs for AD plants with PVSA cycles accounted for approx. £127300 whilst it was close to £190000 (including bio-gas boiler used for steam generation for the operation of the reboiler) for the AD plant with solvent based bio-gas upgrading units. Larger capital investment costs and lower bio-methane production led to larger values for the numerator and lower values for the denominator of Eq. 2 when applied to the AD plant with MEA process for CO₂ removal. Considering that the required heat for the farm is provided by the installed boilers (to produce steam in the MEA unit and to burn the off-gas of the PVSA units), a decrease of propane consumption was reported leading to savings to the farms (or negative cost contributions in Fig.4).

Currently paid incentives in the UK for bio-methane production at this plant scale are around 3.89 p/kWh of bio-methane consequently the ALTCBM for the plant with PVSA cycles represents approximately 35% of the paid tariff. The ALTCBM for the plant with amines is around 39% of the values for the revenues. It shows that for both kind of separation processes, there is a quite significant profit margin for the farms that opt for the deployment of bio-methane production.

![Fig. 3. Net bio-methane production per kg of volatile solid in the slurry](image)

![Fig. 4. Average life-time cost of bio-methane for AD plants with PVSA cycles and MEA](image)

Conclusion

In this paper, a techno-economic analysis of solvent based (MEA) and sorbent based (PVSA cycles) bio-gas upgrading technologies for bio-methane production is presented. Highly detailed process simulations were used for the selection of operating conditions that enabled the fulfillment of the separation targets (CH₄ purity over 95% and...
CH₄ recovery close to 85%) with the lowest energy consumption. Based on the results for the sizing of the separation units and the duties for the heat and fluid flow equipment, capital investment and maintenance costs were quantified by using cost estimation correlations and quotations from existing systems. It was shown that the average life-time cost of bio-methane for the plant with PVSA cycles was 10% lower than the average life-time cost of bio-methane for the plant with MEA based units while capital investment cost was 37% lower. For both technologies, it was found that the average annualized life-cycle cost of bio-methane production was lower than the incentives paid by the government in the UK. This demonstrates that the production of bio-methane from farm waste can offer a good commercial opportunity to the farm sector in the UK.

Acknowledgements

This project has received funding from the Engineering and Physical Sciences Research Council through Grant No. EP/M007359/1 and the RCUK Energy Programme through Grant. No. EP/K011820/1. Data used and not presented in this paper can be obtained from the corresponding author.

References

[6] Total Fina ELF. Gas Sweetening Processes. Oil and gas processing plant design and operation course. 2002
[27] ASME. Boiler and Pressure Vessel Code: An international code. 2013