Enhanced oxidation of arsenite to arsenate using tunable K^+ concentration in the OMS-2 tunnel

by Hou, J., Sha, Z., Hartley, W., Tan, W., Wang, M., Xiong, J., Li, Y., Ke, Y. Long, Y. and Xue, S.

Copyright, Publisher and Additional Information: This is the author accepted manuscript. The final published version (version of record) is available online via Elsevier.

This version is made available under the CC-BY-ND-NC licence: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode

Please refer to any applicable terms of use of the publisher

DOI: https://doi.org/10.1016/j.envpol.2018.03.047
Enhanced oxidation of arsenite to arsenate in K\(^+\) doped manganese oxide OMS-2 tunnel structures

Jingtao Hou\(^{a,b,*}\), Zhenjie Sha\(^a\), William Hartley\(^c\), Wenfeng Tan\(^a\), Mingxia Wang\(^a\), Juan Xiong\(^a\), Yuanzhi Li\(^b\), Yujie Ke\(^d\), Yi Long\(^d\), Shengguo Xue\(^{c,f}\)

\(^a\) Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.

\(^b\) State Key Laboratory of Silicate Materials for Architectures Wuhan University of Technology, Wuhan, 430070, China.

\(^c\) Crop and Environment Sciences Department, Harper Adams University, Newport, Shropshire, TF10 8NB, United Kingdom

\(^d\) School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore

\(^e\) Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China.

\(^f\) Chinese National Engineering Research Centre for Control and Treatment of Heavy Metal Pollution, Changsha 410083, China

Corresponding author:

\(^*\) Email: jthou@mail.hzau.edu.cn (J. T. H.), Telephone: +86-27-8728 7508.
ABSTRACT

Manganese oxide cryptomelane-type octahedral molecular sieves (OMS-2) possess a high redox potential and the ability to oxidize arsenite (As(III)) to arsenate (As(V)) in order to reduce its toxicity and removal. However, coexisting ions such as phosphate are ubiquitous and readily bond to manganese oxide surfaces, consequently passivating surface active sites and reducing As(III) oxidation. In this study, we present a novel strategy to significantly promote As(III) oxidation activity by OMS-2 by tuning the K⁺ concentration. Batch experimental results reveal that increasing the K⁺ concentration not only considerably improved As(III) oxidation kinetics from 0.027 to 0.102 min⁻¹, but also reduced the adverse effect of competitive ions on As(III) oxidation. Arsenite oxidation was investigated through As(V) and phosphate adsorption kinetics, detection of Mn²⁺ release in solution, surface charge characteristics, and density functional theory (DFT) calculations. Experimental results and theoretical calculations confirm that by increasing K⁺ concentrations in the OMS-2 tunnel structure, not only does it improve arsenic adsorption on K⁺ doped OMS-2, but also accelerates two electron transfers from As(III) to each bonded Mn atom on OMS-2 surfaces, and as a result, considerably improves As(III) oxidation rate, which is responsible for counteracting adsorption by coexisting ions.

Keywords: OMS-2; K⁺ doping; Arsenite oxidation; Arsenate; Competitive adsorption

Main findings of the work

We present a novel strategy to promote As(III) oxidation kinetic rate and counteract the adverse effects of coexisting ions on As(III) oxidation by tuning K⁺ content in the OMS-2 tunnel structure.
1 Introduction

Arsenic (As) has received much attention due to its toxicity and carcinogenicity, even at concentrations of up to 10 μg L\(^{-1}\). In As-contaminated groundwater, As is mainly present in its inorganic state, with arsenate [As(V)] and arsenite [As(III)] being the two predominant species. It has been reported that the emission of waste As species in many industrial processes such as metallurgic industries, mainly exists as As(III) species, which is very stable in aqueous environments under slightly reducing conditions (Gutiérrez-Ruíz et al., 2005). Since As(III) has greater toxicity, but weaker adsorption characteristics compared to As(V) (Ventura-Lima et al., 2011), oxidation of As(III) to As(V) is a desirable process, in order to reduce As toxicity and promote total As removal. However, oxygen-driven oxidation of As(III) is reportedly very slow in groundwater, having reaction kinetic half-times in the range of several months to a year (Gorny et al., 2015). Therefore, additional oxidants are still required for the efficient oxidation of As(III) prior to treatment by coprecipitation and adsorption (Mondal et al., 2013).

Manganese oxides are ubiquitous in terrestrial environments and possess high redox potentials (Fischel et al., 2015; Villalobos et al., 2014), being highly efficient oxidants of As(III), potentially promoting total As removal (Chakravarty et al., 2002; Chen et al., 2018; Deschamps et al., 2005; Maliyekkal et al., 2009; Neumann et al., 2013; Zhang et al., 2013, 2007). For example, Zhang et al (2013) observed that synthetic Fe-Mn binary oxides had a high removal capacity for As(III), which was attributed to the oxidation ability of manganese oxides for As(III), but also As(V) adsorption by iron oxides (Zhang et al., 2014, 2007). Deschamps et al (2005) evaluated both As(III) and As(V) removal from groundwater using a natural Fe and Mn enriched ore (denoted as cFeMn) through batch and column experiments (Deschamps et al., 2005). They revealed that cFeMn (45% Fe\(_2\)O\(_3\) and 35% MnO\(_2\)) demonstrated efficient removal of 100 μg L\(^{-1}\) As(III) to the drinking water standard when total throughput was lower than 7400 BV (Bed Volume). Although both synthetic Fe-Mn binary oxides and Fe and Mn enriched samples present highly efficient removal of As(III), their As(III) oxidation kinetic rates are very slow, i.e., As(III) can be completely oxidized to As(V) only after 8 h (Zhang et al., 2007) and 50 h (Deschamps et al., 2005), respectively. It is well known that widespread coexisting ions, such as phosphate, readily bind to manganese oxide surface active sites, and these may hinder As(III) adsorption and subsequently impede their oxidation (Hou et al., 2017, 2016; Lafferty et al., 2010). Therefore, it is of scientific and technological importance to
seek a novel approach to improving As(III) oxidation rate on manganese oxides by reducing the adverse effects of coexisting ions. It is commonly accepted that As(III) species adsorb onto manganese oxides forming a bidentate complex, subsequently two electrons transfer from As(III) to Mn(IV), and this results in the production of As(V) and Mn$^{2+}$ ions (Moore et al., 1990; Nesbitt et al., 1998). Arsenic adsorption and As(III) electron transfer rate must be explored further in order to improve As(III) oxidation rate and accelerate electron transfer from As(III) to Mn.

Cryptomelane-type manganese oxide (OMS-2) possesses a 2 × 2 tunnel structure formed by edge- and corner-shared MnO$_6$ octahedra, and has attracted interest due to its ability to oxidize As(III) (Hou et al., 2016; Li et al., 2010; Wang et al., 2012). Since K$^+$ ions are similar to the dimensions of 2 × 2 tunnel structures, they have been used as an ideal template for synthetizing manganese oxide with 2 × 2 tunnel structures in the laboratory (Liu et al., 2003). Generally, naturally occurring OMS-2 essentially exist as K$^+$ ions in tunnel structures having variable contents. Thus, the varying K$^+$ concentrations in OMS-2 tunnels inadvertently change their chemical and physical properties, such as magnetic properties and catalytic performance for pollutant purification, which has been observed in previous reports (Hou et al., 2013; Luo et al., 2010). Nevertheless, insufficient work has been reported on K$^+$ concentration effects, on As(III) oxidation using OMS-2 in terrestrial environments. The mechanism for K$^+$ ion As(III) oxidation on OMS-2 still remains unanswered. To summarize, understanding the relationship between OMS-2 structure with variable K$^+$ contents and As(III) oxidation activity, will provide important insights into the transport and fate of toxic As(III) in natural environments.

Consequently, K$^+$ doped OMS-2 tunnel structures were used to oxidize As(III) to As(V) in this study. For the first time, we observed a significant effect on As(III) oxidation using variable K$^+$ concentrations with OMS-2. Increasing K$^+$ concentration in tunnel structures promoted As(III) oxidation whilst reducing the adverse effect of coexisting ions such as As(V) and phosphate. We also revealed the origin of the effect of K$^+$ concentration in the tunnel of OMS-2 on As(III) oxidation by combining both experimental and theoretical evidence.
2. Experimental section

2.1. Sample preparation

K⁺ doped OMS-2 samples were synthesized using a superficial hydrothermal redox reaction with MnSO₄, (NH₄)₂S₂O₈, and (NH₄)₂SO₄ by adding variable KNO₃ concentrations at 120 °C for 24 h. The methodology is described in previous work (Hou et al., 2013). Potassium nitrate (KNO₃) (0, 0.4044, 1.6176 g respectively) were added to the reaction solutions which corresponded to KNO₃/MnSO₄ molar ratios of 0, 0.5, and 2, respectively. The samples were subsequently symbolized as K-OMS-2-A, K-OMS-2-B and K-OMS-2-C, respectively.

2.2. Batch experimental procedures

Batch experiments for As(III) oxidation using K⁺ doped OMS-2 samples were performed using a water-bathing rotary oscillator at 160 rpm, at 25 °C. Arsenite was prepared from a NaAsO₂ stock solution to give a 100 μM working solution. Detailed experimental procedures are described in previous work (Hou et al., 2016). The coexisting ions of As(V), phosphate, and Mn²⁺ that affect As(III) oxidation were evaluated by adding 100 μM of Na₂HAsO₄·7H₂O, NaH₂PO₄, and Mn(NO₃)₂ into 100 μM As(III) solution, respectively. pH effect was investigated using buffer solutions at pH 4.7, 6.0 and 9.16, respectively. An acetate acid/sodium acetate buffer system was used to adjust pH to 4.7 and 6.0. A sodium carbonate/sodium bicarbonate buffer system was used to control pH at 9.16. Detailed procedures of the buffer systems are described in previous work (Hou et al., 2016).

2.3. Analysis methods

The concentrations of total As and As(V) in solution were detected using colorimetric spectrophotometry. Arsenite concentration in solution was determined by subtracting As(V) from the total As concentration. Detailed procedures are described in previous work (Hou et al., 2016). When phosphate was present in solution, the concentrations of As(III) and total As species were obtained by hydride generation (LH-2A) atomic absorption spectrophotometry (AAS-6880); detailed procedures are described in previous work (Hou et al., 2016). Dissolved Mn²⁺ concentrations were determined by AAS (6880). Potassium was determined by inductively coupled plasma optical emission spectroscopy (ICP-OES, PerkinElmer Optima 4300DV). Redox potential (Eh) was measured using a CHI660B electrochemical workstation at 25 °C. Platinum and reference electrodes (saturated calomel electrode) were selected as combination electrodes. Eh values
were adjusted by a standard hydrogen electrode (SHE) to obtain true Eh values.

2.4. Isoelectric point test

The isoelectric point (IEP) of K⁺ doped OMS-2 samples were determined on a zeta potential analyzer (Zetasizer Nano, ZEN3600, Malvern Instruments Ltd., U.K) (Wan et al., 2016; Yan et al., 2014). Typically, each sample (2.5 mg) was added to distilled water (500 mL) and sufficiently dispersed through ultrasonication for 0.5 h. A series of 20 ml suspensions (5.0 mg L⁻¹) were then transferred to centrifuge tubes (50 mL) and 0.1 mol L⁻¹ HCl or 2.5 mol L⁻¹ NaOH was used to adjust suspension pH to the target values between 2.0 to 7.0. Each suspension was kept for 1 day at 25 °C to ensure pH remained stable. Zeta potential was tested three times. IEP’s were determined from zeta potential plots against pH, where zeta potential was zero. pH values of the suspensions were tested on a Mettler Toledo pH meter (FiveEasy Plus FE20) with a measurement accuracy of 0.01.

2.5 DFT calculation

A Density functional theory (DFT) calculation was employed to investigate adsorption energy of As species on K-OMS-2 surfaces (K₅Mn₈O₁₆). The Vienna Ab-initio Simulation Package (VASP) was used to perform DFT calculations. A bidentate-binuclear adsorption model of arsenic species on OMS-2 supercells (~ 100 atoms) was constructed according to Manning et al., (2002) and Zhu et al., (2009). To reveal any K⁺ concentration effect on As species, K₂Mn₃₂O₆₄ and K₄Mn₃₂O₆₄ were incorporated into the tunnel of the OMS-2 supercell. The method of DFT calculations is described in previous work (Hou et al., 2013). A 2 × 2 × 2 Monkhorst-Pack k-point mesh was used to optimize the OMS-2 supercell structure. Kinetic cutoff energy was set to 400 eV. The convergence criteria of the electronic and ionic relaxations were set to 10⁻⁴ eV and 0.02 eV Å⁻¹, respectively.

3. Results and discussion

3.1. Sample Characterization

K⁺ doped OMS-2 samples in the tunnel were synthesized using a superficial hydrothermal redox reaction between MnSO₄, (NH₄)₂S₂O₈, (NH₄)₂SO₄, and KNO₃ at 120 °C for 24 h, in which KNO₃/MnSO₄ reactant molar ratios ranged from 0 to 0.5 and 2, respectively (Hou et al., 2013). The samples were labeled as K-OMS-2-A, K-OMS-2-B, and K-OMS-2-C. XRD patterns revealed that the prepared samples had the same cryptomelane structure (OMS-2, K₅Mn₈O₁₆)
(JCPDS-29-1020) (Fig. S1, Supporting information). ICP-OES analysis revealed that K^+ concentrations in the OMS-2 tunnel increased with an increase in the initial $KNO_3/MnSO_4$ reactant molar ratio (Table 1). The K/Mn molar ratios of K-OMS-2-A, K-OMS-2-B, and K-OMS-2-C, were 0, 0.03, and 0.07, respectively (Table 1). The K/Mn molar ratios of K-OMS-2-A, K-OMS-2-B, and K-OMS-2-C obtained by XPS analysis were very close to those determined by ICP-OES, i.e., 0, 0.04, and 0.08, respectively (Table 1). TEM and HRTEM mappings revealed that all K^+ doped OMS-2 samples had nanorod-like morphologies with uniformly exposed [200] facets (Hou et al., 2013). The BET specific surface area of K-OMS-2-A, K-OMS-2-B, and K-OMS-2-C, as calculated from N_2 adsorption or desorption curves, were 65.1, 89.2, and 109.7 m2g$^{-1}$, respectively (Table 1).

3.2. As(III) oxidation performance

Results of As(III) oxidation by K^+ doped OMS-2 are presented in Fig. 1A. Without doping, K-OMS-2-A revealed the lowest As(III) oxidation activity, with 64.5% arsenite oxidation after 30 min. Increasing the tunnel K^+ concentration lead to a considerable increase in As(III) oxidation. Arsenite oxidation by K-OMS-2-B (high K^+ concentration) increased from 64.5% to 83.0% after 30 min. K-OMS-2-C (greatest K^+ concentration) revealed the highest As(III) oxidation activity, with 95.5% arsenite being oxidized to As(V) after 30 min (Fig. 1A). To determine whether dissolved oxygen affected As(III) oxidation, a control study using As(III) in the absence of OMS-2 was carried out at pH 6.0. After 30 minutes there was no change in oxidation state (Fig. 1A) indicating that dissolved oxygen was not involved in this process, which is in agreement with previous work (Lan et al., 2018). The K^+ release in K-OMS-2-C during As(III) oxidation was also examined by ICP-OES analysis. As shown in Fig S2, K^+ concentration was not detected at the initial stage (10 min), but after 30 min, there was a small release of 3.1 wt% (corresponding to the fraction of total K^+ content in K-OMS-2-C), which may be due to the reductive dissolution of manganese oxide during As(III) oxidation (Manning et al., 2002; Nesbitt et al., 1998). This result indicates that K^+ located in the OMS-2 tunnel is stable in our case. Arsenite oxidation by manganese oxide reportedly follows first-order kinetics at the initial reaction stage (e.g., 30 min) (Manning et al., 2002). Thus, As(III) oxidation kinetics rate constants (k_{oc}) for different samples were obtained by fitting a first-order kinetics equation. As shown in Fig. 1B, K-OMS-2-A presents the lowest k_{oc}, i.e., 0.027 min$^{-1}$. For K-OMS-2-B, its k_{oc} increases to 0.059 min$^{-1}$. K-OMS-2-C possesses the highest k_{oc} (0.102 min$^{-1}$), which is 1.73 and 3.7
times greater than those of K-OMS-2-A and K-OMS-2-B, respectively. This result demonstrates that K⁺ concentration in the OMS-2 tunnel has a significant effect on As(III) oxidation.

It is well known that As(III) species do not exist alone, but coexist with As(V) species due to varying redox conditions in aqueous and soil environments (Gorny et al., 2015; Smedley and Kinniburgh, 2002). Therefore, the effect of competitive adsorption must be considered, once K-OMS-2 is used as an oxidant for treating toxic As(III) in real arsenic polluted groundwater. Although previous literature has reported that coexisting As(V) has adverse effects on As(III) oxidation, to date, a limited number of studies have focused on how to reduce the adverse effect of coexisting As(V) on As(III) oxidation by manganese oxide (Hou et al., 2017b, 2016). To evaluate whether As(V) affects As(III) oxidation on K-OMS-2, we added 100 μM As(V) into 100 μM As(III) solution. Fig. 2A reveals that As(III) removal by K-OMS-2-A decreased from 64.5% to 43.2% after addition of 100 μM As(V), which was reduced by 20.2%. Increasing K⁺ concentration in the OMS-2 tunnel lead to a decrease in the adverse effect of As(V) on As(III) oxidation. For K-OMS-2-B (high K⁺ concentration), As(III) removal was reduced from 14.3% to 68.4% after the addition of 100 μM As(V). Whereas for K-OMS-2-C (greatest K⁺ concentration), As(III) removal was 94.9% after the addition of 100 μM As(V), which was only reduced by 0.6%, suggesting As(V) had no obvious effect on As(III) removal by K-OMS-2-C.

This result suggests that the strategy of doping K⁺ in the OMS-2 tunnel is a practicable approach to significantly reducing the adverse effect of coexisting As(V) on As(III) oxidation.

The question in our case, is why coexisting As(V) had no clear effect on As(III) oxidation by K-OMS-2-C? Two considerations which may affect As(III) oxidation by K-OMS-2 include, (a) As(III) oxidation rate kinetics (Hou et al., 2017b, 2016) and (b) favorable adsorption of competitive coexisting ions, which obstruct the contact between As(III) and K-OMS-2 surfaces, and thereby reduce As(III) oxidation rate (Lafferty et al., 2010). In order to determine whether the effect of As(V) on As(III) oxidation arises because As(V) adsorption is preferential, we evaluated As(V) adsorption capacity on three samples. Arsenate adsorption efficiency for K-OMS-2-A, K-OMS-2-B, and K-OMS-2-C was 52.5%, 71.4%, and 79.3%, respectively (Fig. 2B), suggesting that As(V) species can adsorb onto all the OMS-2 samples.

Therefore, a reduction in As(III) oxidation on K-OMS-2-A and K-OMS-2-B following the addition of As(V), may arise from occupation and passivation of OMS-2 surface active sites by As(V). In principle, the greater the As(V) adsorption
onto K-OMS-2, the lower the As(III) removal rate is. Unusually, although K-OMS-2-C demonstrated greater As(V) adsorption capacity (68.7 μmol g⁻¹) than K-OMS-2-B (61.9 μmol g⁻¹) and K-OMS-2-A (45.5 μmol g⁻¹) (Fig. 2B), competitive adsorption of coexisting As(V) had a limited effect on As(III) oxidation (Fig. 2A). The main reason for this may be attributed to the greater As(III) oxidation kinetic rate of K-OMS-2-C in comparison to K-OMS-2-A and K-OMS-2-B (Fig. 3). Consequently, rapid As(III) oxidation kinetic rates play a vital role in counteracting the adverse effects of coexisting As(V) adsorption, thus considerably enhancing As (III) oxidation on K-OMS-2-C.

Phosphate has a structure similar to arsenate and was selected as a competitive ion to further understand the effect of competitive adsorption of As(III) oxidation on K-OMS-2 samples. For K-OMS-2-B and K-OMS-2-A samples, following addition of 100 μM phosphate, As(III) removal decreased to 65.0% and 45.1%, respectively, being reduced by 17.7% and 20.8% as compared to that of no addition (Fig. 3A). This was also observed in previous works, and has been attributed to favorable adsorption of phosphate species onto active sites (Chiu and Hering, 2000; Lafferty et al., 2010). For K-OMS-2-C, As(III) removal was 93.1% after addition of 100 μM phosphate, which was close to that of no phosphate (95.5%), indicating that the presence of phosphate species had no obvious effect on As(III) oxidation by K-OMS-C in this case. Phosphate adsorption kinetic rate constants \(k_{aw} \) of K-OMS-2 samples were obtained by fitting both pseudo-first-order and pseudo-second-order models at a phosphate concentration of 100 μM (Fig. 3B). The fitting formulae for the two models are described in a previous report (Hou et al., 2017a). It can be seen that phosphate rapidly adsorbed onto OMS-2 surfaces at the initial stage and subsequently reached adsorption equilibrium after 200 min (Fig. 3B). Phosphates adsorption kinetic rate on K-OMS-2-A, K-OMS-2-B and K-OMS-2-C, obtained by fitting a first-order model, were 0.075, 0.079, and 0.088 min⁻¹, respectively (Table S1). For K-OMS-2-A and K-OMS-2-B, phosphate adsorption kinetic rates are larger than their corresponding As(III) oxidation kinetic rates (0.027 and 0.059 min⁻¹, respectively). This has revealed that phosphate adsorption on K-OMS-2-A and K-OMS-2-B surfaces is faster than As(III) oxidation, leading to fast occupation of OMS-2 surfaces and reducing As(III) oxidation. The phosphate adsorption kinetic rate of K-OMS-2-C was lower than As(III), revealing that As(III) oxidation was faster, and thereby counteracting the adverse effects of phosphate adsorption. This demonstrates that the highly efficient As(III) oxidation on K-OMS-2-C in the presence of coexisting ions is attributed to its rapid As(III) oxidation kinetic rate.
As a result of re-adsorption of dissolved Mn$^{2+}$ onto manganese oxide surfaces (Lafferty et al., 2011), a decrease in As(III) removal by OMS-2 may occur. Therefore, 100 μM Mn$^{2+}$ was added to the As(III) solution, and K-OMS-2-B and K-OMS-2-A reduced it to 70.9% and 49.5%, respectively, whereas K-OMS-2-C removed 93.5%, having no obvious change compared to no Mn$^{2+}$ addition (Fig. 3A). This result reveals that doping K$^+$ in the OMS-2 tunnel is an approach to fast oxidation of As(III) to As(V) and for opposing the adverse adsorption effect of coexisting ions such as Mn$^{2+}$.

The effect of phosphate and Mn$^{2+}$ was also evaluated at different concentrations (0.1, 1.0, and 4.0 mM) on As(III) oxidation by K-OMS-2-C at pH 6.0 (Fig. S3). Following phosphate addition at 1.0 mM, As(III) removal by K-OMS-2-C (87.1%) was lower than that at 0.1 mM (93.1%). A further increase in phosphate, from 1.0 to 4.0 mM, resulted in As(III) removal being reduced from 87.1% to 75.0% (Fig. S3). There are two possible reasons that may be responsible for interpreting why higher phosphate concentration blocks As(III) oxidation on K-OMS-2-C, even if it has a high As(III) oxidation kinetic rate. Firstly, the phosphate adsorption kinetic rate increased with increasing phosphate concentration in solution (Hou et al., 2017b), and once phosphate adsorption was close to that of the As(III) oxidation kinetic rate, phosphate adsorption by K-OMS-2-C is observed (Hou et al., 2017b). Secondly, a change in redox potential (Eh) following phosphate addition may affect adsorption rate on K-OMS-2-C. Nevertheless, in the presence of low or high phosphate concentration, Eh does not significantly change, and the increase in phosphate adsorption kinetic rate at high phosphate concentration (e.g., 1.0 and 4.0 mM) plays the major role in reducing As(III) oxidation rate (Fig S4). For Mn$^{2+}$ ions, it was revealed that a similar range in phosphate affects As(III) oxidation by K-OMS-2-C. After adding Mn$^{2+}$ from 0.1 mM to 1.0 and 4.0 mM, As(III) removal by K-OMS-2-C decreased from 93.5% to 53.0% and 45.9%, respectively (Fig. 4), indicating that the Mn$^{2+}$ effect on As(III) oxidation was greater than that of phosphate at high concentration.

The effect of dosage and initial As(III) concentration on K-OMS-2-C As(III) oxidation was investigated at pH 6.0 (Fig. S5). Arsenite removal increased with increasing K-OMS-2-C dosage and decreased the initial As(III) concentration (Fig. S5). The pH effect on As(III) removal by K-OMS-2-C was also examined by controlling solution pH to 4.7, 6.0, and 9.16, respectively (Fig. S6). Arsenite removal at 4.7, 6.0, and 9.16 was 93.7, 95.5, and 97.4%, respectively (Fig. S6). Although As(III) removal at pH 9.16 was greater than at pH 6.0 and 4.7, K-OMS-2-C still showed greater As(III)
increasing K²⁺ concentration led to an increase in dissolved Mn²⁺ in solution. Increasing K²⁺ concentration causes IEP values to shift in high pH, thereby reducing the electrostatic repulsion and facilitating As adsorption at neutral pH range (e.g., pH at 6.0).

3.3.3 Detection of dissolved Mn²⁺ in solution

According to the mechanism of As(III) oxidation on manganese oxide as described in the introduction, the faster the electron transfer rate from arenite to Mn atoms in K²⁺ doped OMS-2, the faster is the As(III) oxidation rate and the larger is the dissolved Mn²⁺ ion concentration in solution. Therefore, the change in dissolved Mn²⁺ concentration, as a function of reaction time, was recorded to evaluate As(III) electron transfer rate of different K²⁺ doped OMS-2 samples. As shown in Fig. 5, for K-OMS-2-A, the dissolved Mn²⁺ concentration in solution was 0.020 mmol L⁻¹. Increasing K²⁺ concentration led to an increase in dissolved Mn²⁺ concentration in solution. For K-OMS-2-B with high K²⁺ concentration,
the dissolved Mn\(^{2+}\) concentration increased to 0.037 mmol L\(^{-1}\) after 30 min. For K-OMS-2-C with the highest K\(^{+}\) concentration, the dissolved Mn\(^{2+}\) concentration increased further to 0.049 mmol L\(^{-1}\) after 30 min. The non-stoichiometric Mn\(^{2+}\) concentration in solution related to As(III) oxidation of the three samples was observed after 30 min. This is due to formation of Mn(III) and re-adsorption of dissolved Mn\(^{2+}\) onto manganese oxides (Lafferty et al., 2011; Manning et al., 2002). We also compared Mn\(^{2+}\) formation rate \((r_{\text{Mn}^{2+}})\) (Table 1). K-OMS-2-C revealed the highest \(r_{\text{Mn}^{2+}}\) (7.76 \(\mu\)mol g\(^{-1}\) min\(^{-1}\)), followed by K-OMS-2-B (4.04 \(\mu\)mol g\(^{-1}\) min\(^{-1}\)) and then K-OMS-2-A (2.44 \(\mu\)mol g\(^{-1}\) min\(^{-1}\)).

By increasing the K\(^{+}\) concentration in OMS-2 tunnels, enhanced electron transfer from As to Mn stimulated As(III) oxidation as discussed above.

3.3.4 DFT calculation

To reveal K\(^{+}\) effects on As(III) oxidation, As adsorption energy \((E_{\text{ads}})\) in the presence of varying K\(^{+}\) concentrations (2 atom \% and 4 atom \% K\(^{+}\)) was calculated using density functional theory (DFT) calculations. Since H\(_2\)O molecules can rapidly adsorb on OMS-2 surfaces, this may affect As adsorption on OMS-2, so an OMS-2 model (~ 96 atoms) containing a H\(_2\)O molecule to simulate the solution system was created (Fig. 6). The As(V) species, HAsO\(_4^{2-}\), were chosen to perform the calculations for this work. The formula for calculating adsorption energy \((E_{\text{ads}})\) of HAsO\(_4^{2-}\) on K\(^{+}\)-doped OMS-2 was as follows.

\[
E_{\text{ads}} = E_{\text{total}} - E_{\text{bulk}} - E_{\text{HAsO}4^{2-}}.
\]

Where \(E_{\text{total}}\) is the total energy of the K\(^{+}\) doped OMS-2 supercell with a HAsO\(_4^{2-}\) ion adsorbed, \(E_{\text{bulk}}\) is the bulk energy of the K\(^{+}\) doped OMS-2 supercell, and \(E_{\text{HAsO}4^{2-}}\) is the energy of a HAsO\(_4^{2-}\) ion.

For OMS-2 supercells in the presence of low K\(^{+}\) at 2 atom \%, the obtained \(E_{\text{ads}}\) of HAsO\(_4^{2-}\) was 5.94 eV. Increasing the K\(^{+}\) concentration from 2 atom \% to 4 atom \%, the obtained \(E_{\text{ads}}\) of HAsO\(_4^{2-}\) decreased from 5.94 eV to 4.69 eV. This indicated that high K\(^{+}\) concentrations in the OMS-2 tunnel facilitates adsorption of HAsO\(_4^{2-}\) ions on the OMS-2 supercell, which is in agreement with previous experimental work for As(V) adsorption.

The \(E_{\text{ads}}\) of As(III) species HAsO\(_4^{2-}\) on the OMS-2 supercell with different K\(^{+}\) concentrations in the tunnel was also calculated. The model for HAsO\(_4^{2-}\) adsorption on OMS-2 surfaces was the same as that of HAsO\(_4^{2-}\) adsorption (Fig. S7). The calculated \(E_{\text{ads}}\) of HAsO\(_4^{2-}\) on the OMS-2 supercell in the presence of low K\(^{+}\) concentration at 2 atom \% was 7.21 eV,
which was greater than that in the presence of 4 atom % K⁺ (6.27 eV), indicating that the presence of high K⁺ concentrations makes adsorption of As(III) species on OMS-2 more favorable. The greater adsorption of As(III) on OMS-2 with high K⁺ concentrations (e.g., 4 atom%), means that there is efficient contact between K-OMS-2 and As(III) species, which is a vital step before As(III) species are rapidly oxidized to As(V) by OMS-2.

To date, several strategies have been reported for improving As(III) oxidation on OMS-2. The first strategy involves decreasing particle size and increasing specific surface area (SSA) by synthesizing nano/micro-structured OMS-2 with tunable morphologies (Wang et al., 2012; Zhang and Sun, 2013). However, an increase in its specific As(III) oxidation rate was very low. The second strategy involved controlling reaction conditions by changing the system pH, temperature, initial As(III) concentration, and manganese oxide dosage (Fischel et al., 2015; Li et al., 2010). Nevertheless, manipulating pH, temperature, and As(III) concentration is very difficult to control in actual arsenic polluted groundwater, and the effect of reducing coexisting ions still remains unclear. A third strategy involves tuning the oxygen vacancy defect concentration in OMS-2 as reported in our previous work (Hou et al., 2016). The strategy described here, K⁺ doping of OMS-2, is one of the most efficient methods to enhance arsenite oxidation, as evidenced by a considerable increase in As(III) oxidation rate and 3.8 times improvement in As(III) oxidation kinetic rate constants.

3.4 Environmental applications

Manganese oxide containing composites such as Fe and Mn enriched ore have been reportedly used as practicable adsorbent materials for treating actual arsenic contaminated groundwater in India and Brazil (Chakravarty et al., 2002; Deschamps et al., 2005). Batch and column experiments demonstrated the highly efficient adsorption capability of Fe and Mn enriched ore for As(III), mainly attributed to manganese oxides oxidation ability. Nevertheless, As(III) oxidation on Fe and Mn enriched ore is very slow due to the coating of manganese oxide surfaces by iron oxides, thus leading to the passivation of its active sites. Therefore, it is still necessary to utilize additional manganese oxides as low-cost and environmentally friendly oxidants for pre-oxidation of As(III) to As(V). However, it should not be ignored that the competitive adsorption effect can be passivated once it comes in to contact with abundant competitive ions and bacteria in aqueous environments. Therefore, rapid oxidation of arsenite to arsenate by K-OMS-2, and subsequent adsorption of produced arsenate by low cost natural Fe and Mn ore, is an available strategy for passivating
and decreasing toxicity of As species in arsenic contaminated groundwater, which will be further investigated in future work.

4 Conclusion

Cryptomelane-type manganese oxides with tunable K\(^+\) concentrations were employed to remove arsenite from As-polluted water. Batch investigations revealed that the presence of high K\(^+\) concentrations in OMS-2 greatly promoted As(III) oxidation activity and kinetic rates, thus reducing the unfavorable effects of coexisting ions such as As(V), phosphate, and Mn\(^{2+}\). Experimental and theoretical evidence also revealed that increasing K\(^+\) concentrations in OMS-2 led to highly efficient contact between manganese oxide and As species as well as fast charge transfer from As to Mn, thus considerably improving As(III) oxidation activity. The present work emphasizes the importance of rapid oxidation of highly toxic As(III) to less toxic As(V), when using manganese oxide containing composites as absorbent materials, especially in aqueous environments with abundant competitive ions. It is significant that all results presented here are from laboratory-based studies, and not from actual contaminated groundwater. Further studies are now required in order to assess the strategy described here using real arsenic contaminated wastewater.

Acknowledgment

This work was supported by the National Natural Science Foundation of China (41425006, 21707168), Natural Science Foundation of Hubei Province (2018CFB674), the Fundamental Research Funds for the Central Universities (No. 2662017QD013), China Postdoctoral Science Foundation (2015M580674), and Opening Foundation of the Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha, 410083, China (No. 2015CNERC-CTHMP-03).

Appendix A. Supplementary data Supplementary

Appendix A. Supplementary data Supplementary data associated with this article can be found in the online version.

References

Deschamps, E., Ciminelli, V.S.T., Höll, W.H., 2005. Removal of As(III) and As(V) from water using a natural Fe and Mn

Hou, J., Liu, L., Li, Y., Mao, M., Lv, H., Zhao, X., 2013. Tuning the K’ concentration in the tunnel of OMS-2 nanorods leads

Hou, J., Luo, J., Song, S., Li, Y., Li, Q., 2017a. The remarkable effect of the coexisting arsenite and arsenate species ratios on

Lafferty, B.J., Meade, T.G., Sparks, D.L., 2010. Evaluating Environmental Influences on As III Oxidation Kinetics by a Poorly

List of Table and Figure captions

Table 1 Specific surface area, specific As(III) oxidation rate within 5min, and initial Mn$^{2+}$ release rate of the samples.

Fig. 1. The evolution of As(III) concentration with reaction time in solution during reaction between 1.2 g L$^{-1}$ OMS-2 sample and 100 μM As(III) solution at pH 6.0 (A) and the fitting result of As(III) oxidation kinetics on different samples using a first-order kinetics equation (B).

Fig. 2. A(III) removal before and after addition of 100 μM As(V) (A) and As (V) adsorption on K$^+$ doped OMS-2 at pH 6.0 (B): OMS-2 dosage was 1.2 g L$^{-1}$, As(V) concentration was 100 μM.

Fig. 3. As(III) removal with and without addition of 100 μM phosphate (green column) and Mn$^{2+}$ (blue column) during reaction between 100 μM As(III) and 1.2 g L$^{-1}$ sample at pH 6.0 (A) and fitting curves for phosphate adsorption kinetics on three samples at 100 μM phosphate concentration and 1.2 g L$^{-1}$ dosage.

Fig. 4. Zeta potentials of the samples as a function of pH value of suspensions.

Fig. 5. Change of dissolved Mn$^{2+}$ concentration with reaction time during reaction between 100 μM As(III) solution and 1.2 g L$^{-1}$ OMS-2 at pH 6.0.

Fig. 6. Calculated supercell of K$^+$ doped OMS-2 with 2 atom % K$^+$ (K$_2$Mn$_{32}$O$_{64}$) (a) and 4 atom % K$^+$ (K$_4$Mn$_{32}$O$_{64}$) (b): HAsO$_4^{2-}$ ion and H$_2$O molecule adsorbed at the surface of the supercell.

Table 1 Specific surface area, specific As(III) oxidation rate within 5min, and initial Mn$^{2+}$ release rate of the samples.

<table>
<thead>
<tr>
<th>Samples</th>
<th>Surface area (m2 g$^{-1}$)</th>
<th>K/Mn atomic ratio</th>
<th>As(III) reaction rate (μmol g$^{-1}$ min$^{-1}$)</th>
<th>Specific As(III) reaction rate (μmol m2 min$^{-1}$)</th>
<th>Mn$^{2+}$ release rate (μmol g$^{-1}$ min$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-OMS-2-A</td>
<td>65.1</td>
<td>0</td>
<td>2.90</td>
<td>0.045</td>
<td>7.76</td>
</tr>
<tr>
<td>K-OMS-2-B</td>
<td>89.2</td>
<td>0.03</td>
<td>4.29</td>
<td>0.048</td>
<td>4.04</td>
</tr>
<tr>
<td>K-OMS-2-C</td>
<td>109.7</td>
<td>0.07</td>
<td>7.78</td>
<td>0.071</td>
<td>2.44</td>
</tr>
</tbody>
</table>
Fig. 1. Evolution of As(III) concentration with reaction time in solution during reaction between 1.2 g L\(^{-1}\) OMS-2 and 100 μM As(III) at pH 6.0 (A) (green line represents blank test of As(III) oxidation in the absence of OMS-2), and the fitting result of As(III) oxidation kinetics on different samples using a first-order kinetics equation (B).
Fig. 2. As(III) removal before and after addition of 100 μM As(V) (A) and As (V) adsorption on K⁺ doped OMS-2 at pH 6.0 (B): OMS-2 dosage was 1.2 g L⁻¹, As(V) concentration was 100 μM.
Fig. 3. As(III) removal with and without addition of 100 μM phosphate (green column) and Mn$^{2+}$ (blue column) during reaction between 100 μM As(III) and 1.2 g L$^{-1}$ sample at pH 6.0 (A) and fitting curves for phosphate adsorption kinetics on three samples at 100 μM phosphate concentration and 1.2 g L$^{-1}$ dosage.

Fig. 4. Zeta potentials of the samples as a function of suspension pH.
Fig. 5. Change of dissolved Mn\(^{2+}\) concentration with reaction time during reaction between 100 μM As(III) solution and 1.2 g L\(^{-1}\) OMS-2 at pH 6.0.

Fig. 6. Calculated supercell of K\(^{+}\) doped OMS-2 with 2 atom % K\(^{+}\) (K\(_{2}\)Mn\(_{32}\)O\(_{64}\)) (a) and 4 atom % K\(^{+}\) (K\(_{4}\)Mn\(_{32}\)O\(_{64}\)) (b): HAsO\(_{4}^{2-}\) ion and H\(_{2}\)O molecule adsorbed at the surface of the supercell.